Web Image Retrieval Using Visual Dictionary

نویسنده

  • Umesh K K
چکیده

In this research, we have proposed semantic based image retrieval system to retrieve set of relevant images for the given query image from the Web. We have used global color space model and Dense SIFT feature extraction technique to generate visual dictionary using proposed quantization algorithm. The images are transformed into set of features. These features are used as inputs in our proposed Quantization algorithm for generating the code word to form visual dictionary. These codewords are used to represent images semantically to form visual labels using Bag-of-Features (BoF). The Histogram intersection method is used to measure the distance between input image and the set of images in the image database to retrieve similar images. The experimental results are evaluated over a collection of 1000 generic Web images to demonstrate the effectiveness of the proposed system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

TELECOMParisTech at ImageClefphoto 2008: Bi-Modal Text and Image Retrieval with Diversity Enhancement

In this paper we describe the participation of TELECOM ParisTech in the ImageClefphoto 2008 challenge. This edition focuses on promoting diversity in the results produced by the retrieval systems. Given the high level semantic content of the topics, search engines based solely on text or visual descriptors are unlikely to offer satisfactory results. Our system uses several text and visual descr...

متن کامل

Image and Video Representations based on Visual Dictionaries

Effectively encoding visual properties from multimedia content is challenging. One popular approach to deal with this challenge is the visual dictionary model. In this model, images are handled as an unordered set of local features being represented by the so-called bag-of-(visual-)words vector. In this thesis, we work on three research problems related to the visual dictionary model. The first...

متن کامل

Unsupervised Learning of Visual Sense Models for Polysemous Words

Polysemy is a problem for methods that exploit image search engines to build object category models. Existing unsupervised approaches do not take word sense into consideration. We propose a new method that uses a dictionary to learn models of visual word sense from a large collection of unlabeled web data. The use of LDA to discover a latent sense space makes the model robust despite the very l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012